These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Esterases as pesticide biomarkers in crayfish (Procambarus clarkii, Crustacea): tissue distribution, sensitivity to model compounds and recovery from inactivation.
    Author: Vioque-Fernández A, de Almeida EA, López-Barea J.
    Journal: Comp Biochem Physiol C Toxicol Pharmacol; 2007 Apr; 145(3):404-12. PubMed ID: 17324631.
    Abstract:
    The specific activities of acetyl- and butyrylcholinesterase and carboxylesterase were assayed in the digestive gland and in nervous and muscle tissues of the crayfish Procambarus clarkii. Since acetylcholinesterase prevails in nervous tissue and carboxylesterase in digestive gland, they are proposed as biomarkers. Muscle had negligible activities of all esterases, and all tissues had a low butyrylcholinesterase activity. Esterases were mostly cytosolic in digestive gland and muscle, but membrane-bound in nervous tissue; use of Triton X-100 is not recommended due to its widely diverging effects in esterase assays. Phenylmethylsulphonylfluoride inhibited acetyl- and butyrylcholinesterase in extracts from all tissues, and in digestive gland only carboxylesterase. In digestive gland, tetra[monoisopropyl]-pyrophosphorotetramide inhibited all esterases with different sensitivities, while in muscle and nervous tissue it only partially inhibited all esterases. Carbamates inhibited 100-fold more strongly than organophosphates acetyl- and butyrylcholinesterase activities. Carboxylesterase was inhibited by carbaryl and chlorpyrifos, but not by eserine and malathion. In vitro conditions to evaluate recovery from inactivation of esterases by model pesticides were established for acetylcholinesterase and carboxylesterase. The new reactivation protocol could be useful as a biomarker of pesticide exposure to differentiate between dilution-reversible inhibitions, indicating carbamate exposure, from dilution-irreversible effect, attributed to organophosphate exposure.
    [Abstract] [Full Text] [Related] [New Search]