These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hollow chitosan/poly(acrylic acid) nanospheres as drug carriers. Author: Hu Y, Ding Y, Ding D, Sun M, Zhang L, Jiang X, Yang C. Journal: Biomacromolecules; 2007 Apr; 8(4):1069-76. PubMed ID: 17326676. Abstract: The preparation, in-vitro release, in-vitro cytotoxicity, and in-vivo drug delivery of doxorubicin (DOX)-loaded chitosan (CS)-poly(acrylic acid) (PAA) hollow nanospheres were investigated. The loading was done by dissolving a certain amount of DOX in non-cross-linked CS-PAA nanospheres aqueous solution followed by cross-linking chitosan with glutaraldehyde. The drug-loading content was up to 4.3% and the size of drug-loaded hollow nanospheres, determined by dynamic light scattering, was 118 nm. The nanospheres showed a continuous release of the entrapped DOX up to 10 days in vitro and showed comparable in-vitro cytotoxicity against HepG2 cells compared to the free DOX. In-vivo DOX delivery of DOX-loaded CS-PAA nanospheres showed that DOX concentration in blood can be maintained for a longer period than free DOX solution, and the DOX concentration in mice liver can be maintained constantly at relatively high level. The interesting feature of DOX-loaded CS-PAA hollow nanopspheres is that the loaded DOX can be delivered into the mice brain. The confocal laser scanning microscopy analysis reveals that fluorescein isothiocyanate (FITC)-labeled CS-PAA can deposit in different organs including liver, spleen, and brain.[Abstract] [Full Text] [Related] [New Search]