These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Novel sigma receptor ligands: synthesis and biological profile.
    Author: Prezzavento O, Campisi A, Ronsisvalle S, Li Volti G, Marrazzo A, Bramanti V, Cannavò G, Vanella L, Cagnotto A, Mennini T, Ientile R, Ronsisvalle G.
    Journal: J Med Chem; 2007 Mar 08; 50(5):951-61. PubMed ID: 17328523.
    Abstract:
    The aim of the present study was to investigate the biological profile of new substituted 1-phenyl-2-cyclopropylmethylamines. High affinity for both sigma subtypes was achieved when 4-phenylpiperidin-4-ol (4a-e) and 4-benzylpiperidine moieties were present (5a-e). (1R,2S/1S,2R)-2-[4-Hydroxy-4-phenylpiperidin-1-yl)methyl]-1-(4-methylphenyl)cyclopropanecarboxylate (4b) showed high affinity for the sigma1 sites (Ki = 1.5 nM) and the most favorable sigma1/sigma2 selectivity (Ki(sigma2)/Ki(sigma1) = 33.9). Binding affinity studies showed that 4b binding on N-methyl-d-aspartate (NMDA), dopaminergic (D1, D2, D3), muscarinic, histaminergic H1, adrenergic (alpha1, alpha2), serotoninergic (5-HT2A, 5-HT2C, 5-HT3, 5-HT4, 5-HT6), DA (DAT), and 5-HT (SERT) transporters was not significant. Interestingly, sigma ligands differently induced the expression of tissue transglutaminase (TG-2) in primary astroglial cell cultures. We suggest that 4b may act as a sigma1/sigma2 agonist and that the sigma ligands may modulate TG-2 differently.
    [Abstract] [Full Text] [Related] [New Search]