These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Lack of connexin 40 causes displacement of renin-producing cells from afferent arterioles to the extraglomerular mesangium. Author: Kurtz L, Schweda F, de Wit C, Kriz W, Witzgall R, Warth R, Sauter A, Kurtz A, Wagner C. Journal: J Am Soc Nephrol; 2007 Apr; 18(4):1103-11. PubMed ID: 17329574. Abstract: In the adult kidney, renin-producing cells are typically located in the walls of afferent arterioles at the transition into the glomerular capillary network. The mechanisms that are responsible for restricting renin expression to the juxtaglomerular position are largely unknown. This study showed that in mice that lack connexin 40 (Cx40), the predominant connexin of renin-producing cells, renin-positive cells are absent in the vessel walls and instead are found in cells of the extraglomerular mesangium, glomerular tuft, and periglomerular interstitium. Blocking macula densa transport function by acute administration of loop diuretics strongly enhances renin secretion in vivo and in isolated perfused kidneys of wild-type mice. This effect of loop diuretics is markedly attenuated in vivo and even blunted in vitro in Cx40-deficient mice. Even after prolonged stimulation of renin secretion by severe sodium depletion, renin expression is not seen in juxtaglomerular cells or in cells of more proximal parts of the arterial vessel wall as occurs normally. Instead, renin remains restricted to the extra-/periglomerular interstitium in Cx40-deficient mice. In contrast to the striking displacement of renin-expressing cells in the adult kidney, renin expression in the vessels of the developing kidney was found to be normal. This is the first evidence to indicate that cell-to-cell communication via gap junctions is essential for the correct juxtaglomerular positioning and recruitment of renin-producing cells. Moreover, these findings support the notion that gap junctions are relevant for the macula densa signaling to renin-producing cells.[Abstract] [Full Text] [Related] [New Search]