These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ca2+ influx through both L- and N-type Ca2+ channels increases c-fos expression by electrical stimulation of sympathetic neurons. Author: Zhao R, Liu L, Rittenhouse AR. Journal: Eur J Neurosci; 2007 Feb; 25(4):1127-35. PubMed ID: 17331208. Abstract: During direct membrane depolarization, Ca2+ influx primarily through L-type Ca2+ (L-) channels initiates activity-dependent gene transcription. This is surprising given that in most neurons a minority of the total Ca2+ current arises from L-channel activity. However, many studies have stimulated Ca2+ influx with unphysiological stimuli such as chronic membrane depolarization using high K+ medium. Few studies have tested whether other Ca2+ channels stimulate gene transcription in adult neurons as a consequence of direct electrical stimulation. Therefore, we evaluated the role of L- and N-type Ca2+ (N-) channel activity in regulating mRNA levels of c-fos, an activity-dependent transcription factor, in adult rat superior cervical ganglion (SCG) neurons as the majority of Ca2+ channels are N-type, while only a minority are L-type. Changes in c-fos mRNA levels were measured using semi-quantitative and single-cell RT-PCR. Phosphorylation of CREB (pCREB) and changes in c-Fos levels were visualized in dissociated cells by immunocytochemistry. Increases in pCREB, c-fos mRNA and c-Fos protein with either K+ or electrical depolarization required Ca2+ influx. These results support previous findings that elevated c-fos levels result from pCREB stimulating c-fos transcription. Elevation of pCREB, c-fos and c-Fos with K+ depolarization depended on L-channel activity. By contrast, antagonizing either channel at 10-Hz stimulation minimized these increases despite unequal numbers of the two channel types. Transition to exclusive L-channel involvement occurred with increasing frequency of stimulation (from 10 to 20 to 50 Hz). Our results demonstrate that N- and L-channel participation in regulating c-fos expression is encoded in the pattern of electrical stimulation.[Abstract] [Full Text] [Related] [New Search]