These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Gossypin, a pentahydroxy glucosyl flavone, inhibits the transforming growth factor beta-activated kinase-1-mediated NF-kappaB activation pathway, leading to potentiation of apoptosis, suppression of invasion, and abrogation of osteoclastogenesis.
    Author: Kunnumakkara AB, Nair AS, Ahn KS, Pandey MK, Yi Z, Liu M, Aggarwal BB.
    Journal: Blood; 2007 Jun 15; 109(12):5112-21. PubMed ID: 17332240.
    Abstract:
    Gossypin, a flavone originally isolated from Hibiscus vitifolius, has been shown to suppress angiogenesis, inflammation, and carcinogenesis. The mechanisms of these activities, however, are unknown. Because nuclear factor-kappaB (NF-kappaB) is associated with inflammation, carcinogenesis, hyperproliferation, invasion, and angiogenesis, we hypothesized that gossypin mediates its effects through modulation of NF-kappaB activation. In the present study, we demonstrate that gossypin (and not gossypetin, an aglycone analog) inhibited NF-kappaB activation induced by inflammatory stimuli and carcinogens. Constitutive NF-kappaB activation in tumor cells was also inhibited by this flavone. Inhibition of I kappa B alpha kinase by gossypin led to the suppression of I kappa B alpha phosphorylation and degradation, p65 nuclear translocation, and NF-kappaB-regulated gene expression. This, in turn, led to the down-regulation of gene products involved in cell survival (IAP2, XIAP, Bcl-2, Bcl-xL, survivin, and antiFas-associated death domain-like interleukin-1 beta-converting enzyme-inhibitory protein), proliferation (c-myc, cyclin D1, and cyclooxygenase-2), angiogenesis (vascular endothelial growth factor), and invasion (matrix metalloprotease-9). Suppression of these gene products by gossypin enhanced apoptosis induced by tumor necrosis factor and chemotherapeutic agents, suppressed tumor necrosis factor-induced cellular invasion, abrogated receptor activator of NF-kappaB ligand-induced osteoclastogenesis, and vascular endothelial growth factor-induced migration of human umbilical vein endothelial cells. Overall, our results demonstrate that gossypin inhibits the NF-kappaB activation pathway, which may explain its role in the suppression of inflammation, carcinogenesis, and angiogenesis.
    [Abstract] [Full Text] [Related] [New Search]