These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of a novel non-thiazolidinedione peroxisome proliferator-activated receptor alpha/gamma agonist on glucose uptake. Author: Hu X, Feng Y, Liu X, Zhao XF, Yu JH, Yang YS, Sydow-Bäckman M, Hörling J, Zierath JR, Leng Y. Journal: Diabetologia; 2007 May; 50(5):1048-57. PubMed ID: 17333104. Abstract: AIMS/HYPOTHESIS: The effect of the benzopyran derivative T33, a novel non-thiazolidinedione agent, was studied on peroxisome proliferator-activated receptors (PPARs), insulin signalling and glucose uptake in adipocytes and skeletal muscle. We hypothesised that T33 could activate PPARgamma and exert a beneficial effect on insulin action on glucose uptake and lipid metabolism. MATERIALS AND METHODS: Using a cell-based reporter gene assay, T33 was identified as a PPARalpha/gamma dual agonist, which activated human PPARgamma and PPARalpha with EC50 values of 19 and 148 nmol/l, respectively. The effect of T33 on glucose metabolism was studied in cultured 3T3-L1 adipocytes and L6 myotubes. In vivo effects of T33 on skeletal muscle were determined in ob/ob mice treated with 8 mg/kg T33. The effect of T33 on metabolic abnormalities was observed in diet-induced obese mice. RESULTS: Exposure of 3T3-L1 adipocytes to T33 for 4 days increased basal and insulin-stimulated glucose uptake, with no effect noted in L6 myotubes. Treatment of ob/ob mice for 20 days with T33 normalised basal and insulin-stimulated glucose uptake and increased phosphorylation of Akt and p38 mitogen-activated protein kinase in skeletal muscle. In contrast, phosphorylation of AMP-activated protein kinase was unaltered. Moreover, T33 improved insulin sensitivity and lipid metabolism in diet-induced obese mice. CONCLUSIONS/INTERPRETATION: T33 is non-thiazolidinedione PPARalpha/gamma dual agonist which directly increases basal and insulin-stimulated glucose uptake in adipocytes and secondarily improves insulin action on insulin signalling and glucose metabolism in skeletal muscle from diabetic ob/ob mice.[Abstract] [Full Text] [Related] [New Search]