These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A cell-based nitric oxide reporter assay useful for the identification and characterization of modulators of the nitric oxide/guanosine 3',5'-cyclic monophosphate pathway.
    Author: Wunder F, Buehler G, Hüser J, Mundt S, Bechem M, Kalthof B.
    Journal: Anal Biochem; 2007 Apr 15; 363(2):219-27. PubMed ID: 17336915.
    Abstract:
    Nitric oxide (NO) plays an important role in protection against the onset and progression of various cardiovascular disorders. Therefore, the NO/guanosine 3',5'-cyclic monophosphate (cGMP) pathway has gained considerable attention and has become a target for new drug development. We have established a rapid, homogeneous, cell-based, and highly sensitive reporter assay for NO generated by endothelial nitric oxide synthase (eNOS). In a coculture system, NO production is indirectly monitored in living cells via soluble guanylyl cyclase (sGC) activation and calcium influx mediated by the olfactory cyclic nucleotide-gated (CNG) cation channel CNGA2, acting as the intracellular cGMP sensor. Using this NO reporter assay, we performed a fully automated high-throughput screening campaign for stimulators of NO synthesis. The coculture system reflects most aspects of the natural NO/cGMP pathway, namely, Ca(2+)-dependent and Ca(2+)-independent regulation of eNOS activity by G protein-coupled receptor agonists, oxidative stress, phosphorylation, and cofactor availability as well as NO-mediated stimulation of cGMP synthesis by sGC activation. The NO reporter assay allows the real-time detection of NO synthesis within living cells and makes it possible to identify and characterize activators and inhibitors of enzymes involved in the NO/cGMP signaling pathway.
    [Abstract] [Full Text] [Related] [New Search]