These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Guanosine 3',5'-cyclic monophosphate (cGMP)/cGMP-dependent protein kinase induce interleukin-6 transcription in osteoblasts. Author: Broderick KE, Zhang T, Rangaswami H, Zeng Y, Zhao X, Boss GR, Pilz RB. Journal: Mol Endocrinol; 2007 May; 21(5):1148-62. PubMed ID: 17341596. Abstract: Natriuretic peptides and nitric oxide (NO) activate the cGMP/cGMP-dependent protein kinase (PKG) signaling pathway and play an important role in bone development and adult bone homeostasis. The cytokine IL-6 regulates bone turnover and osteoclast and osteoblast differentiation. We found that C-type natriuretic peptide and the NO donor Deta-NONOate induced IL-6 mRNA expression in primary human osteoblasts, an effect mimicked by the membrane-permeable cGMP analog 8-chlorophenylthio-cGMP (8-CPT-cGMP). Similar results were obtained in rat UMR106 osteosarcoma cells, where C-type natriuretic peptide and 8-CPT-cGMP stimulated transcription of the human IL-6 promoter and increased IL-6 secretion into the medium. Cotransfection of type I PKG enhanced the cGMP effect on the IL-6 promoter, whereas small interfering RNA-mediated silencing of PKG I expression prevented the cGMP effect on IL-6 mRNA expression. Step-wise deletion of the IL-6 promoter demonstrated a cAMP response element to be critical for transcriptional effects of cGMP, and experiments with dominant interfering proteins showed that cGMP activation of the promoter required cAMP response element binding-related proteins, and, to a lesser extent, proteins of the CAAT enhancer-binding protein and activator protein-1 (Fos/Jun) families. 8-CPT-cGMP induced nuclear translocation of type I PKG and increased cAMP response element binding-related protein phosphorylation on Ser(133). PKG regulation of the IL-6 promoter appeared to be of physiological significance, because inhibitors of the NO/cGMP/PKG signaling pathway largely prevented fluid shear stress-induced increases of IL-6 mRNA in UMR106 cells.[Abstract] [Full Text] [Related] [New Search]