These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The structural properties of magainin in water, TFE/water, and aqueous urea solutions: molecular dynamics simulations.
    Author: Mehrnejad F, Naderi-Manesh H, Ranjbar B.
    Journal: Proteins; 2007 Jun 01; 67(4):931-40. PubMed ID: 17357162.
    Abstract:
    Here, the MD simulations and comparative structural analysis of Magainin in water, TFE/water, and 2M, 4M, and BM urea solutions is reported. For MAG-TFE/water and MAG-2M urea the largely alpha helical conformation of the peptide is maintained throughout the 9-ns simulation. While in water, 4M urea, and 8M urea, the helix length decreases and at the same time helix radius increases. This suggests a more destabilized magainin secondary structure. Our simulation data reveals that the stabilizing effect of TFE is induced by preferential accumulation of TFE molecules around the alpha helical peptide. These results indicate that an aqueous urea solution solvates the surface of polypeptide chain more favorably than pure water. Urea molecules interact more favorably with nonpolar groups of the peptide in comparison with water, and the presence of urea improves the interactions of water molecules with the hydrophilic groups of the peptide. At 8M urea, there are more direct interactions between the urea and solute, and the helix is destabilized. At 2M urea, the interaction of urea molecules and nonpolar residues are weak, therefore, the presence of urea molecules decreases the interactions of water molecules with hydrophilic groups. Urea could not deteriorate the peptide secondary structure with time from an initial helix structure.
    [Abstract] [Full Text] [Related] [New Search]