These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: FLT3/ITD expression increases expansion, survival and entry into cell cycle of human haematopoietic stem/progenitor cells.
    Author: Li L, Piloto O, Kim KT, Ye Z, Nguyen HB, Yu X, Levis M, Cheng L, Small D.
    Journal: Br J Haematol; 2007 Apr; 137(1):64-75. PubMed ID: 17359372.
    Abstract:
    Activating mutation of FLT3 by internal tandem duplications (ITDs) in the juxtamembrane region is the most common molecular aberration found in acute myeloid leukaemia (AML). In this study, a lentiviral vector containing two promoters achieved consistent and efficient co-expression of FLT3/ITD and GFP in transduced human CD34(+) haematopoietic stem/progenitor cells (HSPCs). When cultured in medium containing stem cell factor, thrombopoietin and FLT3 ligand (FL), FLT3/ITD-transduced cells demonstrated enhanced self-renewal and survival potential, unaffected by the withdrawal of FL. These cells retained a CD34(+)CD38(-/dim) immunophenotype, typical of HSPCs. Compared to cells transduced with a vector expressing GFP alone, FLT3/ITD-transduced HSPCs had a higher fraction of cells in active cell cycle. FLT3/ITD-transduced HSPCs were more sensitive to the induction of cytotoxicity by CEP-701, a selective FLT3 inhibitor, indicating a rapid 'addiction' to signalling through this oncogenic pathway. The FLT3/ITD-transduced HSPCs showed increased expression of Pim-1, c-Myc and Cyclin D3 (CCND3), each of which may contribute to the altered genetic programme instituted by FLT3/ITD signalling. Taken together, these results indicate that FLT3/ITD mutations may contribute to leukaemic transformation of normal HSPCs by prolonging survival, promoting proliferation and partially blocking differentiation. CEP-701 may act as a potent therapeutic agent for AML stem cells harbouring FLT3/ITD mutations.
    [Abstract] [Full Text] [Related] [New Search]