These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Structure and function of a hexameric copper-containing nitrite reductase.
    Author: Nojiri M, Xie Y, Inoue T, Yamamoto T, Matsumura H, Kataoka K, Deligeer, Yamaguchi K, Kai Y, Suzuki S.
    Journal: Proc Natl Acad Sci U S A; 2007 Mar 13; 104(11):4315-20. PubMed ID: 17360521.
    Abstract:
    Dissimilatory nitrite reductase (NIR) is a key enzyme in denitrification, catalyzing the first step that leads to gaseous products (NO, N(2)O, and N(2)). We have determined the crystal structure of a Cu-containing NIR from a methylotrophic denitrifying bacterium, Hyphomicrobium denitrificans, at 2.2-A resolution. The overall structure of this H. denitrificans NIR reveals a trigonal prism-shaped molecule in which a monomer consisting of 447 residues and three Cu atoms is organized into a unique hexamer (i.e., a tightly associated dimer of trimers). Each monomer is composed of an N-terminal region containing a Greek key beta-barrel folding domain, cupredoxin domain I, and a C-terminal region containing cupredoxin domains II and III. Both cupredoxin domains I and II bind one type 1 Cu and are combined with a long loop comprising 31 amino acid residues. The type 2 Cu is ligated at the interface between domain II of one monomer and domain III of an adjacent monomer. Between the two trimeric C-terminal regions are three interfaces formed by an interaction between the domains I, and the type 1 Cu in the domain is required for dimerization of the trimer. The type 1 Cu in domain II functions as an electron acceptor from an electron donor protein and then transfers an electron to the type 2 Cu, binding the substrate to reduce nitrite to NO. The discussion of the intermolecular electron transfer process from cytochrome c(550) to the H. denitrificans NIR is based on x-ray crystallographic and kinetic results.
    [Abstract] [Full Text] [Related] [New Search]