These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Histone hyperacetylation induces demethylation of reelin and 67-kDa glutamic acid decarboxylase promoters.
    Author: Dong E, Guidotti A, Grayson DR, Costa E.
    Journal: Proc Natl Acad Sci U S A; 2007 Mar 13; 104(11):4676-81. PubMed ID: 17360583.
    Abstract:
    Reelin and glutamic acid decarboxylase 67 (GAD(67)) expression down-regulation in GABAergic interneurons of mice exposed to protracted treatment with l-methionine (MET) is attributed to RELN and GAD(67) promoter cytosine-5-hypermethylation. This process recruits various transcription repressor proteins [methyl-CpG binding protein (MeCP2) and histone deacetylases (HDACs)] leading to formation of transcriptionally inactive chromatin. Here, we tested the hypothesis that RELN and GAD(67) promoter cytosine-5-hypermethylation induced by a protracted MET treatment is reversible and that repeated administration of HDAC inhibitors influences this process by an activation of DNA-cytosine-5-demethylation. In the frontal cortices of mice receiving MET (5.2 mmol/kg twice a day for 7 days) and killed at 1, 2, 3, 6, and 9 days during MET washout, we measured RELN (base pairs -414 to -242) and GAD(67) (base pairs -1133 to -942) promoter methylation and MeCP2 bound to methylated cytosines of RELN (base pairs -520 to -198) and GAD(67) (base pairs -446 to -760) promoters. Levels of RELN and GAD(67) promoter hypermethylation induced by 7 days of MET treatment declines by approximately 50% after 6 days of MET withdrawal. When valproate (VPA) (2 mmol/kg) or MS-275 (0.015-0.12 mmol/kg), two structurally unrelated HDAC inhibitors, was given after MET treatment termination, VPA and MS-275 dramatically accelerated RELN and GAD(67) promoter demethylation in 48-72 h. At these doses, VPA and MS-275 effectively increased the binding of acetylhistone-3 to RELN and GAD(67) promoters, suggesting that histone-3 covalent modifications modulate DNA demethylation in terminally differentiated neurons, supporting the view that, directly or indirectly, HDAC inhibitors may facilitate DNA demethylation.
    [Abstract] [Full Text] [Related] [New Search]