These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Time-varying cortical activations related to visual-tactile cross-modal links in spatial selective attention. Author: Kida T, Inui K, Wasaka T, Akatsuka K, Tanaka E, Kakigi R. Journal: J Neurophysiol; 2007 May; 97(5):3585-96. PubMed ID: 17360823. Abstract: The neural mechanisms underlying unimodal spatial attention have long been studied, but the cortical processes underlying cross-modal links remain a matter of debate. To reveal the cortical processes underlying the cross-modal links between vision and touch in spatial attention, we recorded magnetoencephalographic (MEG) responses to electrocutaneous stimuli when subjects directed attention to an electrocutaneous or visual stimulus presented randomly in the left or right space. Neural responses recorded around the bilateral sylvian fissures at 85 and 100 ms after the electrocutaneous stimulus were significantly enhanced by spatial attention in both the touch-irrelevant and -relevant modalities. Source analysis revealed that the sylvian responses were generated in the secondary somatosensory cortex (SII). An early response, M50c, generated in the contralateral primary somatosensory cortex (SI), was not modulated by attention. There were no significant attentional changes in the source location or magnetic field distribution, suggesting attentional facilitation of the neural activity in SII itself, rather than a tonic bias effect or overlapping of separate neuronal populations. The results show that spatial attention enhances responses to tactile inputs in SII, independent of sensory modality attended. The underlying mechanism remains to be determined, but may be an increase in gain.[Abstract] [Full Text] [Related] [New Search]