These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mullerian-inhibiting substance induces Gro-beta expression in breast cancer cells through a nuclear factor-kappaB-dependent and Smad1-dependent mechanism.
    Author: Gupta V, Yeo G, Kawakubo H, Rangnekar V, Ramaswamy P, Hayashida T, MacLaughlin DT, Donahoe PK, Maheswaran S.
    Journal: Cancer Res; 2007 Mar 15; 67(6):2747-56. PubMed ID: 17363596.
    Abstract:
    Mullerian-inhibiting substance (MIS), a transforming growth factor-beta family member, activates the nuclear factor-kappaB (NF-kappaB) pathway and induces the expression of B-cell translocation gene 2 (BTG2), IFN regulatory factor-1 (IRF-1), and the chemokine Gro-beta. Inhibiting NF-kappaB activation with a phosphorylation-deficient IkappaBalpha mutant abrogated MIS-mediated induction of all three genes. Expression of dominant-negative Smad1, in which serines at the COOH-terminal SSVS motif are converted to alanines, suppressed MIS-induced Smad1 phosphorylation and impaired MIS-stimulated Gro-beta promoter-driven reporter expression and Gro-beta mRNA. Suppressing Smad1 expression using small interfering RNA also mitigated MIS-induced Gro-beta mRNA, suggesting that regulation of Gro-beta expression by MIS was dependent on activation of NF-kappaB as well as Smad1. However, induction of IRF-1 and BTG2 mRNAs by MIS was independent of Smad1 activation. Characterization of kappaB-binding sequences within Gro-beta, BTG2, and IRF-1 promoters showed that MIS stimulated binding of p50 and p65 subunits to all three sites, whereas phosphorylated Smad1 (phospho-Smad1) protein was detectable only in the NF-kappaB complex bound to the kappaB site of the Gro-beta promoter. Consistent with these observations, chromatin immunoprecipitation assays showed recruitment of both phospho-Smad1 and p65 to the Gro-beta promoter in vivo, whereas p65, but not phospho-Smad1, was recruited to the BTG2 promoter. These results show a novel interaction between MIS-stimulated Smad1 and NF-kappaB signaling in which enhancement of NF-kappaB DNA binding and gene expression by phospho-Smad1 is dependent on the sequence of the kappaB consensus site within the promoter.
    [Abstract] [Full Text] [Related] [New Search]