These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Immobilization of EAFD heavy metals using acidic materials. Author: Mitrakas MG, Sikalidis CA, Karamanli TP. Journal: J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Mar; 42(4):535-41. PubMed ID: 17365324. Abstract: This study was undertaken to determine the chemical and leaching characteristics of the Electric Arc Furnace Dust (EAFD) generated by a Greek plant and to investigate various acidic materials efficiency on the EAFD stabilization. In order to investigate how [OH(-)] neutralization influences EAFD heavy metals leachability, Na HCO3(-), HNO3 and H3PO4 were used as acidic materials. The concentration of Pb in leachate was found between 40 and 3.7 x 10(3) mg Pb/kg of EAFD, exceeding in all EAFD samples the maximum acceptable limit (MAL) 25 mg/kg for landfill disposal. Neutralization of [OH(-)] with HCO3(-) decreased Pb concentration in leachate at 350 mg Pb/kg of EAFD, while excess over a stoichiometry in HCO3(-) addition increased leachability of Pb, Cd, Cr, Cu as well as F. Using HNO3 as an acidic material decreased leachability of almost all the parameters concerning the EC directive 33/19-01-2003 in a pH value up to 7.2, in exception of Zn. Zinc leachability showed a U shape curve as a function of pH value. The concentration of Zn was minimized in a concentration lower than 1 mg Zn/kg EAFD in a pH range 10.5 to 9 and exceeded the MAL 90 mg/kg at a pH value 7.2. However, the major disadvantage of HNO3 was proved to be its leachability, since NO3(-) concentration in leachate was equal to HNO3 dose. H3PO4 was found the most promising acidic material for the chemical immobilization of heavy metals, since it decreased their leachability in a concentration significantly lower than MAL at a pH value up to 7.1. Finally, the concentration of Cl(-) ranged between 18 and 33 x 10(3) mg Cl(-)/kg EAFD exceeding in all EAFD samples the MAL 17 x 10(3) mg/kg. This high concentration of Cl(-) is attributed to the scrap and it could be reduced only by modification of its composition.[Abstract] [Full Text] [Related] [New Search]