These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Arsenic removal by iron-modified activated carbon. Author: Chen W, Parette R, Zou J, Cannon FS, Dempsey BA. Journal: Water Res; 2007 May; 41(9):1851-8. PubMed ID: 17367839. Abstract: Iron-impregnated activated carbons have been found to be very effective in arsenic removal. Oxyanionic arsenic species such as arsenate and arsenite adsorb at the iron oxyhydroxide surface by forming complexes with the surface sites. Our goal has been to load as much iron within the carbon pores as possible while also rendering as much of the iron to be available for sorbing arsenic. Surface oxidation of carbon by HNO3/H2SO4 or by HNO3/KMnO4 increased the amount of iron that could be loaded to 7.6-8.0%; arsenic stayed below 10 ppb until 12,000 bed volumes during rapid small-scale tests (RSSCTs) using Rutland, MA groundwater (40-60 ppb arsenic, and pH of 7.6-8.0). Boehm titrations showed that surface oxidation greatly increased the concentration of carboxylic and phenolic surface groups. Iron impregnation by precipitation or iron salt evaporation was also evaluated. Iron content was increased to 9-17% with internal iron-loading, and to 33.6% with both internal and external iron loading. These iron-tailored carbons reached 25,000-34,000 bed volumes to 10 ppb arsenic breakthrough during RSSCTs. With the 33.6% iron loading, some iron peeled off.[Abstract] [Full Text] [Related] [New Search]