These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ontogeny of carnitine palmitoyltransferase I activity, carnitine-Km, and mRNA abundance in pigs throughout growth and development.
    Author: Lyvers Peffer P, Lin X, Jacobi SK, Gatlin LA, Woodworth J, Odle J.
    Journal: J Nutr; 2007 Apr; 137(4):898-903. PubMed ID: 17374651.
    Abstract:
    Carnitine palmitoyltransferase (CPT) I catalyzes an important regulatory step in lipid metabolism; however, no studies, to our knowledge, have evaluated the molecular and kinetic [maximal velocity and Michaelis constant (K(m)) for carnitine] ontogeny of CPT I and prevailing tissue concentrations of carnitine in pigs. To this end, hepatic and skeletal muscle tissues were examined at various ages: birth; 24 h; 1, 3, 5, and 8 wk of age; and adult. Hepatic and skeletal muscle CPT I specific activities were low at birth and increased 100 and 70%, respectively, during the first week of life (P < 0.05). Skeletal muscle transcript amounts were 2.7-fold greater (P < 0.001) in 24-h-old pigs relative to newborns, whereas hepatic CPT I mRNA remained constant at each age studied. The apparent K(m) for carnitine decreased 48% (P < 0.05) during the initial 3 wk of life in liver and decreased 40% (P < 0.05) during the first week of life in skeletal muscle. Plasma and liver free carnitine concentrations increased 95 and 62%, respectively, within 24 h after birth (P < 0.05) and hepatic carnitine concentrations remained constant through 5 wk of age. Consequently, hepatic carnitine concentrations were 20-80% greater (P < 0.05) than the K(m) for carnitine during the suckling period. Skeletal muscle carnitine met or exceeded the apparent K(m) for carnitine at each stage of development. Collectively, these findings suggest that postnatal increases in CPT I activity during the suckling period are accompanied by increased tissue carnitine; however, the lack of hepatic CPT I mRNA induction and low activity reported in both tissues prior to 1 wk of age may limit postnatal lipid utilization during the piglet's transition to extra-uterine life.
    [Abstract] [Full Text] [Related] [New Search]