These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Discriminating between cellular and misfolded prion protein by using affinity to 9-aminoacridine compounds. Author: Phuan PW, Zorn JA, Safar J, Giles K, Prusiner SB, Cohen FE, May BCH. Journal: J Gen Virol; 2007 Apr; 88(Pt 4):1392-1401. PubMed ID: 17374787. Abstract: Quinacrine and related 9-aminoacridine compounds are effective in eliminating the alternatively folded prion protein, termed PrP(Sc), from scrapie-infected cultured cells. Clinical evaluations of quinacrine for the treatment of human prion diseases are progressing in the absence of a clear understanding of the molecular mechanism by which prion replication is blocked. Here, insight into the mode of action of 9-aminoacridine compounds was sought by using a chemical proteomics approach to target identification. Cellular macromolecules that bind 9-aminoacridine ligands were affinity-purified from tissue lysates by using a 9-aminoacridine-functionalized solid-phase matrix. Although the 9-aminoacridine matrix was conformationally selective for PrP(Sc), it was inefficient: approximately 5 % of PrP(Sc) was bound under conditions that did not support binding of the cellular isoform, PrP(C). Our findings suggest that 9-aminoacridine compounds may reduce the PrP(Sc) burden either by occluding epitopes necessary for templating on the surface of PrP(Sc) or by altering the stability of PrP(Sc) oligomers, where a one-to-one stoichiometry is not necessary.[Abstract] [Full Text] [Related] [New Search]