These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The pH threshold in the dissolution of beta-lactoglobulin gels and aggregates in alkali. Author: Mercadé-Prieto R, Paterson WR, Wilson DI. Journal: Biomacromolecules; 2007 Apr; 8(4):1162-70. PubMed ID: 17378604. Abstract: The existence of a practical minimum pH for the dissolution of heat-induced whey gels in alkaline solutions has been studied using beta-lactoglobulin (betaLg) as a model protein. A sharp transition in solubility was observed between pH 11 and 12; this transition shifts to higher pHs for gels formed at higher temperatures and for longer gelling times. The breakdown reactions of heat-induced aggregates in alkali were monitored with size exclusion chromatography. The destruction of large aggregates was faster at higher pH and also showed a transition between pH 11 and 12. Using tryptophan fluorescence and near- and far-UV circular dichroism, this transition was assigned to the base-induced denaturation observed in solutions of aggregates (pK 11.53). It is suggested that the high protein repulsion caused by the large number of charges at pH > 11.5 drives the unfolding of the protein and the disruption of the intermolecular noncovalent bonds. Concentrated urea and GuHCl were found to be less effective than a pH 12 solution in destroying large aggregates. Aggregates formed for a long time (80 degrees C for 24 h) contained a larger number of intermolecular disulfide bonds that hinder the dissolution process. Gels formed at low temperatures (65 degrees C for 60 min), with fewer intermolecular noncovalent bonds, showed a similar solubility-pH profile to that observed for the base-induced denaturation of unheated beta-lactoglobulin (betaLg) (pK 10.63).[Abstract] [Full Text] [Related] [New Search]