These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification of proteins involved in osmotic stress response in Enterobacter sakazakii by proteomics. Author: Riedel K, Lehner A. Journal: Proteomics; 2007 Apr; 7(8):1217-31. PubMed ID: 17380534. Abstract: Enterobacter sakazakii is considered an opportunistic food-borne pathogen, causing rare but significant illness especially in neonates. It has been proposed that the organism is relatively resistant to osmotic and dry stress compared to other species of the Enterobacteriaceae group. To understand the mechanisms involved in osmotic stress response, 2-DE protein analysis coupled to MALDI-TOF MS was employed to investigate changes in the protein profiles of E. sakazakii cells in response to two different types of osmotic stress (physical desiccation and growth in hyperosmotic media). In total, 80 differentially expressed protein spots corresponding to 53 different protein species were identified. Affiliation of proteins to functional categories revealed that a considerable number of the differentially expressed proteins from desiccated and hyperosmotic grown samples belonged to the same functional category but were regulated in opposite directions. Our data show that the protein pattern of NaCl-grown cultures reflect more or less a general down-regulation of central metabolic pathways, whereas adaptation of (non-growing) cells in a desiccated state represents an accumulation of proteins that serve some structural or protective role. The most striking effects observed for both types of osmotic stress in E. sakazakii were a significant down-regulation of the motility apparatus and the formation of filamentous cells.[Abstract] [Full Text] [Related] [New Search]