These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Epimuscular myofascial force transmission between antagonistic and synergistic muscles can explain movement limitation in spastic paresis.
    Author: Huijing PA.
    Journal: J Electromyogr Kinesiol; 2007 Dec; 17(6):708-24. PubMed ID: 17383897.
    Abstract:
    Details and concepts of intramuscular, extramuscular and intermuscular myofascial force transmission are reviewed. Some new experimental data are added regarding myofascial force transmission between antagonistic muscles across the interosseal membrane of the lower hind limb of the rat. Combined with other result presented in this issue, it can be concluded that myofascial force transmission occurs between all muscles within a limb segment. This means that force generated within sarcomeres of an antagonistic muscle may be exerted at the tendon of target muscle or its synergists. Some, in vivo, but initial indications for intersegmental myofascial force transmission are discussed. The concept of myofascial force transmission as an additional load on the muscle proved to be fruitful in the analysis of its muscular effects. In spastic paresis and for healthy muscles distal myofascial loads are often encountered, but cannot fully explain the movement limitations in spastic paresis. Therefore, the concept of simultaneous and opposing myofascial loads is analyzed and used to formulate a hypothesis for explaining the movement limitation: Myofascially transmitted antagonistic force is borne by the spastic muscle, but subsequently transmitted again to distal tendons of synergistic muscles.
    [Abstract] [Full Text] [Related] [New Search]