These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: SDF-1 controls pituitary cell proliferation through the activation of ERK1/2 and the Ca2+-dependent, cytosolic tyrosine kinase Pyk2. Author: Massa A, Casagrande S, Bajetto A, Porcile C, Barbieri F, Thellung S, Arena S, Pattarozzi A, Gatti M, Corsaro A, Robello M, Schettini G, Florio T. Journal: Ann N Y Acad Sci; 2006 Dec; 1090():385-98. PubMed ID: 17384283. Abstract: Stromal cell-derived factor-1 (SDF-1) is a chemokine of the CXC subfamily that exerts its effects via CXCR4, a G-protein-coupled receptor. CXCR4 is often expressed by tumor cells, and its activation causes tumor cell proliferation. Using GH4C1 cells, here we show that SDF-1 induced cell proliferation in a dose-dependent manner. Thus, we evaluated the intracellular signaling involved in this effect. SDF-1 increased cytosolic [Ca2+] and activated Pyk2, ERK1/2, and BKCa channels. To correlate these intracellular effectors with the proliferative activity of SDF-1, we inhibited their activity using BAPTA-AM (Ca2+ chelator), PD98059 (MEK inhibitor), salicylate (Pyk2 inhibitor), and TEA (K+ channel blocker). All these compounds reverted SDF-1-induced proliferation, suggesting the involvement of multiple intracellular pathways. To identify a possible crosstalk and a molecular ordering among these pathways, we tested these antagonists on SDF-1-dependent activation of ERK1/2, Pyk2, and BKCa channels. We report that the inhibition of [Ca2+]i increase or the blockade of BKCa channel activity did not affect ERK1/2 activation by SDF-1; Pyk2 activation was purely Ca2+-dependent, not involving ERK1/2 or BKCa channels; and BKCa channel activity was antagonized by Pyk2 but not by ERK1/2 inhibitors. These data suggest that SDF-1-dependent increase of [Ca2+]i activates Pyk2, which, in turn, regulates BKCa channel activity. Conversely, ERK1/2 activation is an independent phenomenon. In conclusion, we demonstrate that SDF-1 induces proliferation of GH4C1 cells, suggesting that the activation of CXCR4 may represent a novel regulatory mechanism for pituitary cell proliferation which may contribute to pituitary adenoma development.[Abstract] [Full Text] [Related] [New Search]