These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Prolonged treatment of primary hepatocytes with oleate induces insulin resistance through p38 mitogen-activated protein kinase. Author: Liu HY, Collins QF, Xiong Y, Moukdar F, Lupo EG, Liu Z, Cao W. Journal: J Biol Chem; 2007 May 11; 282(19):14205-12. PubMed ID: 17384440. Abstract: Free fatty acid (FFA) is believed to be a major environmental factor linking obesity to Type II diabetes. We have recently reported that FFA can induce gluconeogenesis in hepatocytes through p38 mitogen-activated protein kinase (p38). In this study, we have investigated the role of p38 in oleate-induced hepatic insulin resistance. Our results show that a prolonged treatment of primary hepatocytes with oleate blunted insulin suppression of hepatic gluconeogenesis, and decreased insulin-induced phosphorylation of Akt in a p38-dependent manner. Reduction of the insulin-induced Akt phosphorylation by oleate correlated with activation of p38. In the presence of p38 inhibition, prolonged exposure of hepatocytes to oleate failed to reduce insulin-stimulated phosphorylation of Akt. An siRNA against p38alpha prevented oleate suppression of the insulin-induced phosphorylation of Akt. Furthermore, a prolonged exposure of hepatocytes to oleate decreased insulin-induced tyrosine phosphorylation of IRS1/2, while slightly increasing serine phosphorylation of IRS. The decrease of insulin-stimulated tyrosine phosphorylation of IRS1/2 in hepatocytes by oleate was reversed by the inhibition of p38. We further show that a prolonged exposure of primary hepatocytes to oleate elevated the protein level of the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) gene in a p38-dependent manner, but had no effect on the mRNA level of PTEN. Knocking down the PTEN gene prevented oleate to inhibit insulin activation of Akt and insulin suppression of gluconeogenesis. Together, results from this study demonstrate a critical role for p38 in oleate-induced hepatic insulin resistance.[Abstract] [Full Text] [Related] [New Search]