These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enhanced immunogenicity of modified hepatitis B virus core particle fused with multiepitopes of foot-and-mouth disease virus. Author: Zhang YL, Guo YJ, Wang KY, Lu K, Li K, Zhu Y, Sun SH. Journal: Scand J Immunol; 2007 Apr; 65(4):320-8. PubMed ID: 17386022. Abstract: Hepatitis B virus core (HBc) particles, self-assemble into capsid particles and are extremely immunogenic, hold promise as an immune-enhancing vaccine carrier for heterologous antigens. However, formation of virus-like particles (VLP) can be restricted by size and structure of heterlogous antigens. In the study, we investigated formation of VLP by modified HBc fused with specified foot-and-mouth disease virus (FMDV) multiepitopes and evaluated their immune effects. Firstly, three HBc display vectors (pHBc1, pHBc2 and pHBc3) were constructed by deletions of different lengths within the HBc c/e1 region: 75-78 amino acid (aa), 75-80 aa and 75-82 aa respectively. Secondly, we inserted different compositions of FMDV multiepitopes, BT [VP1(141-160)-VP4(21-40)] and BTB [VP1(141-160)-VP4(21-40)-VP1(141-160)], into modified regions. As a result, only plasmid pHBc3-BTB of six recombinant vectors was expressed as soluble protein, which resulted in the formation of complete VLP confirmed by electron microscopy. Recombinant VLP could be taken up by cells and presented in vitro and in vivo. Furthermore, the modified VLP displayed a significantly stronger immunogenicity than other five recombinant proteins and GST-BTB with a higher titer of peptide-specific and virus-specific antibody, elevated IFN-gamma and interleukin-4 production, especially enhanced lymphocyte proliferation. The results encourage further work towards the development of FMDV vaccines using hepatitis B virus core particles fused with FMDV epitopes.[Abstract] [Full Text] [Related] [New Search]