These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Exploration on regulating factors for proton transfer along hydrogen-bonded water chains.
    Author: Yan S, Zhang L, Cukier RI, Bu Y.
    Journal: Chemphyschem; 2007 Apr 23; 8(6):944-54. PubMed ID: 17387667.
    Abstract:
    Proton transfer along a single-file hydrogen-bonded water chain is elucidated with a special emphasis on the investigation of chain length, side water, and solvent effects, as well as the temperature and pressure dependences. The number of water molecules in the chain varies from one to nine. The proton can be transported to the acceptor fragment through the single-file hydrogen-bonded water wire which contains at most five water molecules. If the number of water molecule is more than five, the proton is trapped by the chain in the hydroxyl-centered H(7)O(3) (+) state. The farthest water molecule involved in the formation of H(7)O(3) (+) is the fifth one away from the donor fragment. These phenomena reappear in the molecular dynamics simulations. The energy of the system is reduced along with the proton conduction. The proton transfer mechanism can be altered by excess proton. The augmentation of the solvent dielectric constant weakens the stability of the system, but favors the proton transfer. NMR spin-spin coupling constants can be used as a criterion in judging whether the proton is transferred or not. The enhancement of temperature increases the thermal motion of the molecule, augments the internal energy of the system, and favors the proton transfer. The lengthening of the water wire increases the entropy of the system, concomitantly, the temperature dependence of the Gibbs free energy increases. The most favorable condition for the proton transfer along the H-bonded water wire is the four-water contained chain with side water attached near to the acceptor fragment in polar solvent under higher temperature.
    [Abstract] [Full Text] [Related] [New Search]