These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Highly effective contact antimicrobial surfaces via polymer surface modifiers. Author: Kurt P, Wood L, Ohman DE, Wynne KJ. Journal: Langmuir; 2007 Apr 24; 23(9):4719-23. PubMed ID: 17388618. Abstract: Contact antimicrobial coatings with poly(alkylammonium) compositions have been a subject of increasing interest in part because of the contribution of biocide release coatings to antibiotic resistance. Herein, a concept for antimicrobial coatings is developed on the basis of the thermodynamically driven surface concentration of soft block side chains. The concept incorporates structural and compositional guidance from naturally occurring antimicrobial proteins and achieves compositional economy via a polymer-surface modifier (PSM). To implement this concept, polyurethanes were prepared having random copolymer 1,3-propylene oxide soft blocks with alkylammonium and either trifluoroethoxy or PEGlyted side chains. Six carbon (C6) and twelve carbon (C12) alkylammonium chain lengths were used. The PSMs were first tested as 100% coatings and were highly effective against aerosol challenges of Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli). To evaluate the surface concentration, solutions containing 2 wt % PSM with a conventional polyurethane were evaporatively coated onto glass slides. These 2% PSM coatings were tested against aerosol challenges of Gram-negative (Pseudomonas aeruginosa and Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria (107 CFU/mL/30 min). A copolymer soft block containing trifluorethoxy (89 mol %) and C-12 alkylammonium (11 mol %) side chains gave the highest biocidal effectiveness in 30 min: 2 wt %, Gram(+/-) bacteria, 100% kill, and 3.6-4.4 log reduction. A zone of inhibition test showed no biocide release for PSMs and PSM-modified compositions. Characteristics that contribute to concept validation include good hard block/soft block phase separation, a cation/co-repeat group ratio mimicking natural biocidal proteins, a semifluorinated "chaperone" aiding in alkylammonium surface concentration, and a low Tg for the alkylammonium soft block.[Abstract] [Full Text] [Related] [New Search]