These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: VPM and PoM nuclei of the rat somatosensory thalamus: intrinsic neuronal properties and corticothalamic feedback. Author: Landisman CE, Connors BW. Journal: Cereb Cortex; 2007 Dec; 17(12):2853-65. PubMed ID: 17389627. Abstract: Sensory information originating in individual whisker follicles ascends through focused projections to the brainstem, then to the ventral posteromedial nucleus (VPM) of the thalamus, and finally into barrels of the primary somatosensory cortex (S1). By contrast, the posteromedial complex (PoM) of the thalamus receives more diffuse sensory projections from the brainstem and projects to the interbarrel septa of S1. Both VPM and PoM receive abundant corticothalamic projections from S1. Using a thalamocortical slice preparation, we characterized differences in intrinsic neuronal properties and in responses to corticothalamic feedback in neurons of VPM and PoM. Due to the plane of the slice, the majority of our observed responses came from activation of layer VI because most or all of the layer V axons terminating in PoM are cut. We found that VPM neurons exhibit higher firing rates than PoM neurons when stimulated with injected current. Stimulation of corticothalamic fibers evoked monosynaptic excitation, disynaptic inhibition, or a combination of the two in both nuclei. A few differences in the feedback responses emerged: purely excitatory postsynaptic potentials (EPSPs) in VPM were smaller and facilitated more than those in PoM, and only the EPSPs in VPM had a strong NMDA component. For both nuclei, some of the feedback responses were purely disynaptic inhibitory postsynaptic potentials (IPSPs) from the thalamic reticular nucleus (TRN). This was due to EPSP failures within VPM and PoM combined with greater reliability of S1-originating synapses onto TRN. These findings suggest that despite the exclusively excitatory nature of corticothalamic fibers, activation of cortex can trigger excitation or inhibition in thalamic relay neurons.[Abstract] [Full Text] [Related] [New Search]