These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The interactive effects of exercise and feeding on oxygen uptake, activity levels, and gastric processing in the graceful crab Cancer gracilis.
    Author: McGaw IJ.
    Journal: Physiol Biochem Zool; 2007; 80(3):335-43. PubMed ID: 17390289.
    Abstract:
    Exercise and digestive processes are known to elevate the metabolic rate of organisms independently. In this study, the effects of simultaneous exercise and digestion were examined in the graceful crab Cancer gracilis. This species exhibited resting oxygen uptake levels between 29 and 42 mg O(2) kg(-1) h(-1). In postprandial crabs, oxygen uptake was approximately double that of unfed crabs. During exercise, oxygen uptake increased three- to fourfold, reaching maximal levels of more than 130 mg O(2) kg(-1 ) h(-1). However, there was no difference in oxygen uptake during activity between unfed and postprandial animals. There was also no difference in exercise endurance levels between unfed and postprandial animals; both sets of animals were unable to right themselves after being turned on their backs, reaching exhaustion after 13-15 attempts. To determine whether increased activity affected gastric processes, the passage of a meal through the digestive system was followed using a fluoroscope. Passage of digesta through the gut system was slower in active animals than in resting crabs. Resting crabs cleared the foregut after approximately 18 h, which was significantly faster than the 34.5 h for constantly active animals. Likewise, the midgut region of resting animals was cleared at a faster rate than that of active animals. Because of residual amounts of digesta remaining in the hindgut, no difference in clearance rates of this section of the gut was evident. The slower clearance times of the foregut were due to a significantly slower rate of mastication of food, as evidenced by a lower cardiac stomach contraction rate. Contraction of the pyloric region of the foregut functions to move the digesta along the midgut, and there was a direct correlation between slower contraction rates of this region and the increased time of passage for digesta through the midgut of active animals. Because increased activity levels affected gastric processing, the crabs exhibited a behavioral response. During a 24-h period after feeding, there was a significant reduction in locomotor activity. The findings of this study suggest a prioritization of metabolic responses toward activity at the expense of digestion. This is discussed in relation to the ability of the crabs to balance the demands of competing physiological systems.
    [Abstract] [Full Text] [Related] [New Search]