These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Vitamin E chemistry. Studies into initial oxidation intermediates of alpha-tocopherol: disproving the involvement of 5a-C-centered "chromanol methide" radicals.
    Author: Rosenau T, Kloser E, Gille L, Mazzini F, Netscher T.
    Journal: J Org Chem; 2007 Apr 27; 72(9):3268-81. PubMed ID: 17391045.
    Abstract:
    Contrary to concepts handed down in the literature from the early days of vitamin E research, one-electron oxidation of vitamin E does not involve 5a-C-centered radicals. A combined approach of analytical techniques, in particular electron paramagnetic resonance spectroscopy (EPR), organic synthesis of special derivatives, isotopic labeling, kinetic studies, and computational chemistry was used to re-evaluate the one-electron and two-electron oxidation chemistry of alpha-tocopherol (alpha-toc). EPR in combination with 5a-13C-labeled compounds provided no indication of the involvement of 5a-C-centered radicals. Oxidation of special tocopherol derivatives were used to disprove the occurrence of 5a-C-centered one-electron intermediates. Additionally it was shown that those vitamin E reactions that were commonly evoked to plead for the involvement of C-centered tocopheryl radicals actually proceeded via heterolytic, i.e., non-radical, intermediates. The results will help to clear widely spread misunderstandings about the chemistry of vitamin E and will have mechanistic implications for the synthesis of tocopherol-based supramolecular structures and 5a-substituted alpha-tocopherol derivatives.
    [Abstract] [Full Text] [Related] [New Search]