These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Intersubject differences in the effect of acidosis on phosphocreatine recovery kinetics in muscle after exercise are due to differences in proton efflux rates. Author: van den Broek NM, De Feyter HM, de Graaf L, Nicolay K, Prompers JJ. Journal: Am J Physiol Cell Physiol; 2007 Jul; 293(1):C228-37. PubMed ID: 17392383. Abstract: (31)P magnetic resonance spectroscopy provides the possibility of obtaining bioenergetic data during skeletal muscle exercise and recovery. The time constant of phosphocreatine (PCr) recovery (tau(PCr)) has been used as a measure of mitochondrial function. However, cytosolic pH has a strong influence on the kinetics of PCr recovery, and it has been suggested that tau(PCr) should be normalized for end-exercise pH. A general correction can only be applied if there are no intersubject differences in the pH dependence of tau(PCr). We investigated the pH dependence of tau(PCr) on a subject-by-subject basis. Furthermore, we determined the kinetics of proton efflux at the start of recovery. Intracellular acidosis slowed PCr recovery, and the pH dependence of tau(PCr) differed among subjects, ranging from -33.0 to -75.3 s/pH unit. The slope of the relation between tau(PCr) and end-exercise pH was positively correlated with both the proton efflux rate and the apparent proton efflux rate constant, indicating that subjects with a smaller pH dependence of tau(PCr) have a higher proton efflux rate. Our study implies that simply correcting tau(PCr) for end-exercise pH is not adequate, in particular when comparing patients and control subjects, because certain disorders are characterized by altered proton efflux from muscle fibers.[Abstract] [Full Text] [Related] [New Search]