These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Prevention of reperfusion injury and microcirculatory failure in macrosteatotic mouse liver by omega-3 fatty acids. Author: El-Badry AM, Moritz W, Contaldo C, Tian Y, Graf R, Clavien PA. Journal: Hepatology; 2007 Apr; 45(4):855-63. PubMed ID: 17393510. Abstract: UNLABELLED: Macrovesicular hepatic steatosis has a lower tolerance to reperfusion injury than microvesicular steatosis with an abnormally high ratio of omega-6 (n-6): omega-3 (n-3) polyunsaturated fatty acids (PUFAs). We investigated the influence of PUFAs on microcirculation in steatotic livers and the potential to minimize reperfusion injury in the macrosteatotic liver by normalization of PUFAs. Ob/ob mice were used as a model of macrovesicular hepatic steatosis and C57/Bl6 mice fed a choline-deficient diet for microvesicular steatosis. Steatotic and lean livers were subjected to 45 minutes of ischemia and 3 hours of reperfusion. Hepatic content of omega-3 and omega-6 PUFAs was determined. Microcirculation was investigated using intravital fluorescence microscopy. A second group of ob/ob mice was supplemented with dietary omega-3 PUFAs and compared with the control diet-fed group. Microcirculation, AST, and Kupffer cell activity were assessed. Macrosteatotic livers had significant microcirculatory dysfunction correlating with high omega-6: omega-3 PUFA ratio. Dietary omega-3 PUFA resulted in normalization of this ratio, reduction of intrahepatic lipids, and decrease in the extent of macrosteatosis. Defective microcirculation was dramatically ameliorated with significant reduction in Kupffer cell activity and protection against hepatocellular injury both before ischemia and after reperfusion. CONCLUSION: Macrosteatotic livers disclosed an abnormal omega-6: omega-3 PUFA ratio that correlates with a microcirculatory defect that enhanced reperfusion injury. Thus, protective strategies applied during or after ischemia are unlikely to be useful. Preoperative dietary omega-3 PUFAs protect macrosteatotic livers against reperfusion injury and might represent a valuable method to expand the live liver donor pool.[Abstract] [Full Text] [Related] [New Search]