These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Role of the C-terminal domain of Thermus thermophilus trehalose synthase in the thermophilicity, thermostability, and efficient production of trehalose. Author: Wang JH, Tsai MY, Chen JJ, Lee GC, Shaw JF. Journal: J Agric Food Chem; 2007 May 02; 55(9):3435-43. PubMed ID: 17394343. Abstract: Trehalose synthase (TS) from Thermus thermophilus (TtTS) is a thermostable enzyme that catalyzes the conversion of maltose into trehalose by intramolecular transglucosylation. It has a relatively higher thermophilicity and thermostability and a better conversion ratio for trehalose production than other known TSs from different sources at present. By amino acid sequences and the schematic motif alignment of trehalose synthase-related enzymes, it was found that TtTS (965 amino acid residues) contains a particular C-terminal fragment that is not found in most other TSs. To verify the function of this fragment, C-terminal deletion and enzyme fusion were respectively performed to explain the important role this fragment plays in the formation of trehalose. First, the C terminus (TtTSDeltaN, 415 amino acid residues) of TtTS is deleted to construct a TtTSDeltaC containing 550 amino acids. Furthermore, a novel cold-active TS was cloned and purified from Deinococcus radiodurans (DrTS, 552 amino acid residues) and then a fusion protein was created with TtTSDeltaN at the C terminus of DrTS (DrTS-TtTSDeltaN). It was found that the recombinant TtTStriangle upC enzyme had a lower thermostability and a higher byproduct than TtTS in catalyzing the conversion of maltose into trehalose. On the other hand, the recombinant DrTS-TtTSDeltaN enzyme had a higher thermostability and a lower byproduct than DrTS in their reactions. The above-mentioned results allowed the inference that the C terminus of TtTS plays a key role in maintaining its thermostability and hence in modulating the side reaction to reduce glucose production at a high temperature. A new, simple, and fast method to improve thermophilicity by fusing this fragment with particular conformation to a thermolabile enzyme is offered.[Abstract] [Full Text] [Related] [New Search]