These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Noradrenaline enhances the expression of the neuronal monocarboxylate transporter MCT2 by translational activation via stimulation of PI3K/Akt and the mTOR/S6K pathway.
    Author: Chenal J, Pellerin L.
    Journal: J Neurochem; 2007 Jul; 102(2):389-97. PubMed ID: 17394554.
    Abstract:
    Monocarboxylate transporter 2 (MCT2) expression is up-regulated by noradrenaline (NA) in cultured cortical neurons via a putative but undetermined translational mechanism. Western blot analysis showed that p44/p42 mitogen-activated protein kinase (MAPK) was rapidly and strongly phosphorylated by NA treatment. NA also rapidly induced serine/threonine protein kinase from AKT virus (Akt) phosphorylation but to a lesser extent than p44/p42 MAPK. However, Akt activation persisted over a longer period. Similarly, NA induced a rapid and persistent phosphorylation of mammalian target of rapamycin (mTOR), a kinase implicated in the regulation of translation in the central nervous system. Consistent with activation of the mTOR/S6 kinase pathway, phosphorylation of the ribosomal S6 protein, a component of the translation machinery, could be observed upon treatment with NA. In parallel, it was found that the NA-induced increase in MCT2 protein was almost completely blocked by LY294002 (phosphoinositide 3-kinase inhibitor) as well as by rapamycin (mTOR inhibitor), while mitogen-activated protein kinase kinase and p38 MAPK inhibitors had much smaller effects. Taken together, these data reveal that NA induces an increase in neuronal MCT2 protein expression by a mechanism involving stimulation of phosphoinositide 3-kinase/Akt and translational activation via the mTOR/S6 kinase pathway. Moreover, considering the role of NA in synaptic plasticity, alterations in MCT2 expression as described in this study might represent an adaptation to face energy demands associated with enhanced synaptic transmission.
    [Abstract] [Full Text] [Related] [New Search]