These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: fMRI reveals a preference for near viewing in the human parieto-occipital cortex. Author: Quinlan DJ, Culham JC. Journal: Neuroimage; 2007 May 15; 36(1):167-87. PubMed ID: 17398117. Abstract: Posterior parietal cortex in primates contains several functional areas associated with visual control of body effectors (e.g., arm, hand and head) which contain neurons tuned to specific depth ranges appropriate for the effector. For example, the macaque ventral intraparietal area (VIP) is involved in head movements and is selective for motion in near-space around the head. We used functional magnetic resonance imaging to examine activation in the putative human VIP homologue (pVIP), as well as parietal and occipital cortex, as a function of viewing distance when multiple cues to target depth were available (Expt 1) and when only oculomotor cues were available (Expt 2). In Experiment 1, subjects viewed stationary or moving disks presented at three distances (with equal retinal sizes). Although activation in pVIP showed no preference for any particular spatial range, the dorsal parieto-occipital sulcus (dPOS) demonstrated a near-space preference, with activation highest for near viewing, moderate for arm's length viewing, and lowest for far viewing. In Experiment 2, we investigated whether the near response alone (convergence of the eyes, accommodation of the lens and pupillary constriction) was sufficient to elicit this same activation pattern. Subjects fixated lights presented at three distances which were illuminated singly (with luminance and visual angle equated across distances). dPOS displayed the same gradient of activation (Near>Medium>Far) as that seen in Experiment 1, even with reduced cues to depth. dPOS seems to reflect the status of the near response (perhaps driven largely by vergence angle) and may provide areas in the dorsal visual stream with spatial information useful for guiding actions toward targets in depth.[Abstract] [Full Text] [Related] [New Search]