These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 2D modeling and preliminary in vitro investigation of a prototype high gradient magnetic separator for biomedical applications.
    Author: Chen H, Kaminski MD, Rosengart AJ.
    Journal: Med Eng Phys; 2008 Jan; 30(1):1-8. PubMed ID: 17400018.
    Abstract:
    High gradient magnetic separation (HGMS) of magnetic materials from fluids or waste products has many established industrial applications. However, there is currently no technology employing HGMS for ex-vivo biomedical applications, such as for the removal of magnetic drug- or toxin-loaded spheres from the human blood stream. Importantly, human HGMS applications require special design modifications as, in contrast to conventional use where magnetic elements are permanently imbedded within the separation chambers, medical separators need to avoid direct contact between the magnetic materials and blood to reduce the risk of blood clotting and to facilitate convenient and safe treatment access for many individuals. We describe and investigate the performance of a magnetic separator prototype designed for biomedical applications. First, the capture efficiency of a prototype HGMS separator unit consisting of a short tubing segment and two opposing magnetizable fine wires along the outside of the tubing was investigated using 2D mathematical modeling. Second, the first-pass effectiveness to remove commercially available, magnetic polystyrene spheres from human blood using a single separator unit was experimentally verified. The theoretical and experimental data correlated well at low flow velocities (<5.0 cm/s) and high external magnetic fields (>0.05 T). This prototype separator unit removed >90% in a single pass of the magnetic spheres from water at mean flow velocity < or =8.0 cm/s and from blood mimic fluids (ethylene glycol-water solutions) at mean flow velocity < or =2.0 cm/s. In summary, we describe and prove the feasibility of a HGMS separator for biomedical applications.
    [Abstract] [Full Text] [Related] [New Search]