These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Intron distribution in Plantae: 500 million years of stasis during land plant evolution.
    Author: Teich R, Grauvogel C, Petersen J.
    Journal: Gene; 2007 Jun 01; 394(1-2):96-104. PubMed ID: 17400407.
    Abstract:
    Little is known about the evolution of the intron-exon organization in the more primitive groups of land plants, and the intron distribution among Plantae (glauco-, rhodo-, chloro- and streptophytes) has not been investigated so far. The present study is focused on some key species such as the liverwort Marchantia polymorpha, representing the most ancient lineage of land plants, and the streptophycean green alga Mesostigma viride, branching prior to charophycean green algae and terrestrial plants. The intron distribution of six genes for sugar phosphate metabolism was analyzed including four different glyceraldehyde-3-phosphate dehydrogenases (GAPDH), the sedoheptulose-1,7-bisphosphatase (SBP) and the glucose-6-phosphate isomerase (GPI). We established 15 new sequences including three cDNA and twelve genomic clones with up to 24 introns per gene, which were identified in the GPI of Marchantia. The intron patterns of all six genes are completely conserved among seed plants, lycopods, mosses and even liverworts. This intron stasis without any gain of novel introns seem to last for nearly 500 million years and may be characteristic for land plants in general. Some unique intron positions in Mesostigma document that a uniform distribution is no common trait of all streptophytes, but it may correlate with the transition to terrestrial habitats. However, the respective genes of chlorophycean green algae display largely different patterns, thus indicating at least one phase of massive intron rearrangement in the green lineage. We moreover included rhodophyte and glaucophyte reference sequences in our analyses and, even if the well documented monophyly of Plantae is not reflected by a uniform intron distribution, at least one GPI intron is strictly conserved for 1.5 billion years.
    [Abstract] [Full Text] [Related] [New Search]