These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Epigallocatechin gallate inhibits phorbol ester-induced activation of NF-kappa B and CREB in mouse skin: role of p38 MAPK. Author: Kundu JK, Surh YJ. Journal: Ann N Y Acad Sci; 2007 Jan; 1095():504-12. PubMed ID: 17404063. Abstract: The modulation of intracellular signaling network involved in an inappropriate expression of cyclooxygenase-2 (COX-2) is a pragmatic approach for chemoprevention with a wide variety of dietary phytochemicals. Epigallocatechin gallate (EGCG), a major green tea polyphenol, is one of the most extensively investigated chemopreventive agents. Our previous study revealed that EGCG inhibited expression of COX-2 and activation of mitogen-activated protein kinases (MAPKs) in mouse skin stimulated with a prototype tumor promotor 12-O-tetradecanoylphorbol-13-acetate (TPA). This study was aimed at identifying transcription factors as molecular targets of EGCG in downregulating COX-2 expression. We found that EGCG inhibited TPA-induced DNA binding of NF-kappaB and CREB in mouse skin in vivo. EGCG also suppressed TPA-induced phosphorylation and subsequent degradation of IkappaBalpha, and prevented nuclear translocation of p65. We also examined whether extracellular signal-regulated protein kinase (ERK) and p38 MAPK, which are known to regulate activation of NF-kappaB, can also modulate CREB DNA binding. Pretreatment with U0126 and SB203580, pharmacological inhibitors of ERK and p38 MAPK, respectively, showed that SB203580, but not U0126, attenuated TPA-induced CREB DNA binding in mouse skin. Taken together, EGCG inhibited TPA-induced DNA binding of NF-kappaB and CREB by blocking activation of p38 MAPK, which may provide a molecular basis of COX-2 inhibition by EGCG in mouse skin in vivo.[Abstract] [Full Text] [Related] [New Search]