These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Parameters affecting the chemical work output of a hybrid photoelectrochemical biofuel cell. Author: Hambourger M, Liddell PA, Gust D, Moore AL, Moore TA. Journal: Photochem Photobiol Sci; 2007 Apr; 6(4):431-7. PubMed ID: 17404638. Abstract: A hybrid photoelectrochemical biofuel cell employing the photoanode architecture of a dye-sensitized solar cell has been assembled. A porphyrin dye sensitizes a TiO(2) semiconductor over the visible range to beyond 650 nm. Photoinduced charge separation at the dye-TiO(2) interface results in electron migration to a cathode, and the holes generated on surface bound dyes oxidize soluble electron mediators. The increased [Ox] : [Red] ratio of the mediator drives the solution-based enzymatic oxidation of appropriate substrates. In this report we investigate how the accumulation of anodic and cathodic products limits cell performance. The NAD(+)/NADH and benzoquinone/hydroquinone redox couples were studied as sacrificial electron donors in the absence of appropriate enzymes or substrates. Comparatively poor cell performance was observed using the benzoquinone/hydroquinone couple. This effect is explained in terms of rapid charge recombination by electron donation from the electrode to benzoquinone in solution, as compared to much less recombination with NAD(+). With the NAD(+)/NADH couple the cell performance is relatively independent of the redox poise of the anode solution, but limited by accumulation of reduction products in the cathodic compartment. Using the NAD(+)/NADH couple, the photochemical reforming of ethanol to hydrogen was demonstrated under conditions where the process would be endergonic in the dark.[Abstract] [Full Text] [Related] [New Search]