These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Activation of a novel ataxia-telangiectasia mutated and Rad3 related/checkpoint kinase 1-dependent prometaphase checkpoint in cancer cells by diallyl trisulfide, a promising cancer chemopreventive constituent of processed garlic.
    Author: Herman-Antosiewicz A, Stan SD, Hahm ER, Xiao D, Singh SV.
    Journal: Mol Cancer Ther; 2007 Apr; 6(4):1249-61. PubMed ID: 17406033.
    Abstract:
    Diallyl trisulfide (DATS), a cancer chemopreventive constituent of garlic, inhibits growth of cancer cells by interfering with cell cycle progression, but the mechanism is not fully understood. Here, we show the existence of a novel ataxia-telangiectasia mutated and Rad3 related (ATR)/checkpoint kinase 1 (Chk1)-dependent checkpoint partially responsible for DATS-mediated prometaphase arrest in cancer cells, which is different from the recently described gamma irradiation-induced mitotic exit checkpoint. The PC-3 human prostate cancer cells synchronized in prometaphase by nocodazole treatment and released to DATS-containing medium remained arrested in prometaphase, whereas the cells released to normal medium exited mitosis and resumed cell cycle. The mitotic arrest was maintained even after 4 h of culture of DATS-treated cells (4-h treatment) in drug-free medium. The DATS-arrested mitotic cells exhibited accumulation of anaphase-promoting complex/cyclosome (APC/C) substrates cyclin A and cyclin B1 and hyperphosphorylation of securin, which was accompanied by increased phosphorylation of the APC/C regulatory subunits Cdc20 and Cdh1. The DATS-mediated accumulation of cyclin B1 and hyperphosphorylation of securin, Cdc20, and Cdh1 were partially but markedly attenuated by knockdown of Chk1 or ATR protein. The U2OS osteosarcoma cells expressing doxycycline-inducible kinase dead ATR were significantly more resistant not only to DATS-mediated prometaphase arrest but also to the accumulation of cyclin B1 and hyperphosphorylation of securin, Cdc20, and Cdh1 compared with cells expressing wild-type ATR. However, securin protein knockdown failed to rescue cells from DATS-induced prometaphase arrest. In conclusion, the present study describes a novel signaling pathway involving ATR/Chk1 in the regulation of DATS-induced prometaphase arrest.
    [Abstract] [Full Text] [Related] [New Search]