These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Density functional theory study of the reaction mechanism and energetics of the reduction of hydrogen peroxide by ebselen, ebselen diselenide, and ebselen selenol. Author: Pearson JK, Boyd RJ. Journal: J Phys Chem A; 2007 Apr 26; 111(16):3152-60. PubMed ID: 17407273. Abstract: Density functional theory calculations at the B3LYP/6-311++G(3df,3pd)//B3LYP/6-31G(d,p) level have been performed to elucidate the mechanism and reaction energetics for the reduction of hydrogen peroxide by ebselen, ebselen diselenide, ebselen selenol, and their sulfur analogues. The effects of solvation have been included with the CPCM model, and in the case of the selenol anion reaction, diffuse functions were used on heavy atoms for the geometry optimizations and thermochemical calculations. The topology of the electron density in each system was investigated using the quantum theory of atoms in molecules, and a detailed interpretation of the electronic charge and population data as well as the atomic energies is presented. Reaction free energy barriers for the oxidation of ebselen, ebselen diselenide, and ebselen selenol are 36.8, 38.4, and 32.5 kcal/mol, respectively, in good qualitative agreement with experiment. It is demonstrated that the oxidized selenium atom is significantly destabilized in all cases and that the exothermicity of the reactions is attributed to the peroxide oxygen atoms via reduction. The lower barrier to oxidation exhibited by the selenol is largely due to entropic effects in the reactant complex.[Abstract] [Full Text] [Related] [New Search]