These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glyphosate-resistant and -susceptible soybean (Glycine max) and canola (Brassica napus) dose response and metabolism relationships with glyphosate. Author: Nandula VK, Reddy KN, Rimando AM, Duke SO, Poston DH. Journal: J Agric Food Chem; 2007 May 02; 55(9):3540-5. PubMed ID: 17417871. Abstract: Experiments were conducted to determine (1) dose response of glyphosate-resistant (GR) and -susceptible (non-GR) soybean [Glycine max (L.) Merr.] and canola (Brassica napus L.) to glyphosate, (2) if differential metabolism of glyphosate to aminomethyl phosphonic acid (AMPA) is the underlying mechanism for differential resistance to glyphosate among GR soybean varieties, and (3) the extent of metabolism of glyphosate to AMPA in GR canola and to correlate metabolism to injury from AMPA. GR50 (glyphosate dose required to cause a 50% reduction in plant dry weight) values for GR (Asgrow 4603RR) and non-GR (HBKC 5025) soybean were 22.8 kg ae ha-1 and 0.47 kg ha-1, respectively, with GR soybean exhibiting a 49-fold level of resistance to glyphosate as compared to non-GR soybean. Differential reduction in chlorophyll by glyphosate was observed between GR soybean varieties, but there were no differences in shoot fresh weight reduction. No significant differences were found between GR varieties in metabolism of glyphosate to AMPA, and in shikimate levels. These results indicate that GR soybean varieties were able to outgrow the initial injury from glyphosate, which was previously caused at least in part by AMPA. GR50 values for GR (Hyola 514RR) and non-GR (Hyola 440) canola were 14.1 and 0.30 kg ha-1, respectively, with GR canola exhibiting a 47-fold level of resistance to glyphosate when compared to non-GR canola. Glyphosate did not cause reduction in chlorophyll content and shoot fresh weight in GR canola, unlike GR soybean. Less glyphosate (per unit leaf weight) was recovered in glyphosate-treated GR canola as compared to glyphosate-treated GR soybean. External application of AMPA caused similar injury in both GR and non-GR canola. The presence of a bacterial glyphosate oxidoreductase gene in GR canola contributes to breakdown of glyphosate to AMPA. However, the AMPA from glyphosate breakdown could have been metabolized to nonphytotoxic metabolites before causing injury to GR canola. Injury in GR and non-GR canola from exogenous application of AMPA was similar.[Abstract] [Full Text] [Related] [New Search]