These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Insights into the structure and dynamics of a room-temperature ionic liquid: ab initio molecular dynamics simulation studies of 1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and the [bmim][PF6]-CO2 mixture. Author: Bhargava BL, Balasubramanian S. Journal: J Phys Chem B; 2007 May 03; 111(17):4477-87. PubMed ID: 17417900. Abstract: Ab initio molecular dynamics (AIMD) studies have been carried out on liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and its mixture with CO2 using the Car-Parrinello molecular dynamics (CPMD) method. Results from AIMD and empirical potential molecular dynamics (MD) have been compared and were found to differ in some respects. With a strong resemblance to the crystal, the AIMD simulated neat liquid exhibits many cation-anion hydrogen bonds, a feature that is almost absent in the MD results. The anions were observed to be strongly polarized in the condensed phase. The addition of CO2 increased the probability of this hydrogen bond formation. CO2 molecules in the vicinity of the ions of [bmim][PF6] exhibit larger deviations from linearity in their instantaneous configurations. The polar environment of the liquid induces a dipole moment in CO2, lifting the degeneracy of its bending mode. The calculated splitting in the vibrational mode compares well with infrared spectroscopic data. The solvation of CO2 in [bmim][PF6] is primarily facilitated by the anion, as seen from the radial and spatial distribution functions. CO2 molecules were found to be aligned tangential to the PF6 spheres with their most probable location being the octahedral voids of the anion. The structural data obtained from AIMD simulations can serve as a benchmark to refine interaction potentials for this important room-temperature ionic liquid.[Abstract] [Full Text] [Related] [New Search]