These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The beta-1,3-exoglucanase gene exgA (exg1) of Aspergillus oryzae is required to catabolize extracellular glucan, and is induced in growth on a solid surface. Author: Tamano K, Satoh Y, Ishii T, Terabayashi Y, Ohtaki S, Sano M, Takahashi T, Koyama Y, Mizutani O, Abe K, Machida M. Journal: Biosci Biotechnol Biochem; 2007 Apr; 71(4):926-34. PubMed ID: 17420593. Abstract: The biological role of ExgA (Exg1), a secretory beta-1,3-exoglucanase of Aspergillus oryzae, and the expression pattern of the exgA (exg1) gene were analyzed. The exgA disruptant and the exgA-overexpressing mutant were constructed, and phenotypes of both mutants were compared. Higher mycelial growth rate and conidiation efficiency were observed for the exgA-overexpressing mutant than for the exgA disruptant when beta-1,3-glucan was supplied as sole carbon source. On the other hand, no difference in phenotype was observed between them in the presence or absence of the inhibitors of cell wall beta-glucan remodeling when grown with glucose. exgA Expression was induced in growth on solid surfaces such as filter membrane and onion inner skin. A combination of poor nutrition and mycelial attachment to a hydrophobic solid surface appears to be an inducing factor for exgA expression. These data suggest that ExgA plays a role in beta-glucan utilization, but is not much involved in cell wall beta-glucan remodeling.[Abstract] [Full Text] [Related] [New Search]