These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Plant cells must pass a K+ threshold to re-enter the cell cycle.
    Author: Sano T, Becker D, Ivashikina N, Wegner LH, Zimmermann U, Roelfsema MR, Nagata T, Hedrich R.
    Journal: Plant J; 2007 May; 50(3):401-13. PubMed ID: 17425714.
    Abstract:
    Potassium is an inevitable component of plant life, and potassium channels play a pivotal role in plant growth and development. The role of potassium and of K(+) channels in plant cell division and cell-cycle progression, however, has not been determined so far. K(+) channel blocker studies with synchronized tobacco BY-2 cells revealed that K(+) uptake is required for proper cell-cycle progression during the transition from G(1) to S phase. Electrophysiological studies (patch-clamp and voltage-clamp techniques) showed a cell-cycle dependency of K(+) channel activities and reduced driving force for K(+) uptake in dividing cells. Among the four Shaker-like K(+) channel genes expressed in BY-2 cells, NKT1 represents an inwardly rectifying K(+) channel that mediates K(+) uptake. NKT1 is transcriptionally induced during G(1) phase, while transcripts of the outward-rectifier NTORK1 dominate S phase. Elongating BY-2 cells appeared hyperpolarized (-101 +/- 11 mV), and had elevated osmotic pressure and approximately twice the turgor pressure when compared with depolarized (-64 +/- 8 mV) dividing cells. This indicates that cells have to gain a threshold K(+) level to re-enter the cell cycle. Based on these findings, turgor regulation through modulation of K(+) channel density in plant cell division and cell-cycle progression is discussed.
    [Abstract] [Full Text] [Related] [New Search]