These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cerebrovascular responses to carbon dioxide in children anaesthetized with halothane and isoflurane. Author: Leon JE, Bissonnette B. Journal: Can J Anaesth; 1991 Oct; 38(7):817-25. PubMed ID: 1742814. Abstract: To determine the effects of isoflurane and halothane on cerebrovascular reactivity to CO2, 30 children aged one to six years were anaesthetized with isoflurane or halothane in an air and oxygen mixture with an FIO2 of 0.3. The end-tidal concentrations (0.5 minimum alveolar concentration (MAC) or 1.0 MAC) of isoflurane or halothane were age-adjusted. After achieving a steady-state at both 0.5 MAC and 1.0 MAC isoflurane and halothane, the end-tidal carbon dioxide tension (PETCO2) was randomly adjusted to 20, 40, or 60 mmHg. Cerebral blood flow velocity (CBFV) and the cerebrovascular resistance index (RI+) in the middle cerebral artery (MCA) were measured by a transcranial Doppler monitor. Three measurements of CBFV and RI+ were obtained at each PETCO2 and isoflurane or halothane concentration. Any rise in the PETCO2 caused an increase in CBFV during both 0.5 MAC (r2 = 0.99 and 0.99) and 1.0 MAC (r2 = 0.96 and 0.95) isoflurane and halothane anaesthesia, respectively (P less than 0.05). The CBFV for isoflurane increased as PETCO2 increased from 20 to 60 mmHg for both 0.5 MAC and 1.0 MAC (P less than 0.05). The CBFV for halothane increased as PETCO2 increased from 20 to 40 mmHg for both 0.5 MAC and 1.0 MAC halothane (P less than 0.05), but did not change as PETCO2 increased from 40 to 60 mmHg for both 0.5 MAC and 1.0 MAC halothane. The RI+ showed an inverse relationship with CBFV at each PETCO2 for 0.5 MAC (r2 = 0.98 and 0.99) and 1.0 MAC (r2 = 0.76 and 0.53) isoflurane and halothane, respectively (P less than 0.05). The CBFV did not differ significantly between 0.5 and 1.0 MAC isoflurane and halothane at corresponding PETCO2 values. The cerebrovascular response to CO2 at 20 mmHg between 0.5 MAC and 1.0 MAC halothane was not significantly different. These data strongly suggest that isoflurane and halothane in doses up to 1.0 MAC do not affect the cerebrovascular reactivity of the MCA to CO2 in anaesthetized, healthy children.[Abstract] [Full Text] [Related] [New Search]