These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Prediction of subcellular protein localization based on functional domain composition.
    Author: Jia P, Qian Z, Zeng Z, Cai Y, Li Y.
    Journal: Biochem Biophys Res Commun; 2007 Jun 01; 357(2):366-70. PubMed ID: 17428441.
    Abstract:
    Assigning subcellular localization (SL) to proteins is one of the major tasks of functional proteomics. Despite the impressive technical advances of the past decades, it is still time-consuming and laborious to experimentally determine SL on a high throughput scale. Thus, computational predictions are the preferred method for large-scale assignment of protein SL, and if appropriate, followed up by experimental studies. In this report, using a machine learning approach, the Nearest Neighbor Algorithm (NNA), we developed a prediction system for protein SL in which we incorporated a protein functional domain profile. The overall accuracy achieved by this system is 93.96%. Furthermore, comparisons with other methods have been conducted to demonstrate the validity and efficiency of our prediction system. We also provide an implementation of our Subcellular Location Prediction System (SLPS), which is available at http://pcal.biosino.org.
    [Abstract] [Full Text] [Related] [New Search]