These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modulation of sympathetic activity by tissue plasminogen activator is independent of plasminogen and urokinase.
    Author: Schaefer U, Vorlova S, Machida T, Melchor JP, Strickland S, Levi R.
    Journal: J Pharmacol Exp Ther; 2007 Jul; 322(1):265-73. PubMed ID: 17429057.
    Abstract:
    Sympathetic neurons synthesize, transport, and release tissue-type plasminogen activators (t-PAs) and urinary-type plasminogen activators (u-PAs). We reported that t-PA enhances sympathetic neurotransmission and exacerbates reperfusion arrhythmias. We have now assessed the role of u-PA and plasminogen. Neurogenic contractile responses to electrical field stimulation (EFS) were determined in vasa deferentia (VD) from mice lacking t-PA (t-PA(-/-)), plasminogen activator inhibitor-1 (PAI-1(-/-)), plasminogen (plgn(-/-)), u-PA (u-PA(-/-)), and wild-type (WT) controls. Similar levels of t-PA were present in VD and cardiac synaptosomes of WT, PAI-1(-/-), plgn(-/-), and u-PA(-/-) mice, whereas t-PA was undetectable in t-PA(-/-) tissues. EFS responses were potentiated and attenuated in VD from PAI-1(-/-) and t-PA(-/-) mice, respectively, but indistinguishable from WT responses in VD from plgn(-/-) and u-PA(-/-) mice. Moreover, t-PA inhibition with t-PA(stop) decreased EFS response in WT mice, whereas u-PA(stop) did not. VD responses to ATP, norepinephrine, and K(+) in t-PA(-/-), PAI-1(-/-), plgn(-/-), and u-PA(-/-) mice were similar to those in WT, whereas t-PA(stop) did not modify VD responses to norepinephrine in WT, t-PA(-/-), and PAI-1(-/-) mice, indicating a prejunctional site of action for t-PA-induced potentiation of sympathetic neurotransmission. Indeed, K(+)-induced norepinephrine exocytosis from cardiac synaptosomes was potentiated in PAI-1(-/-), attenuated in t-PA(-/-) and not different from WT in u-PA(-/-) and plgn(-/-) mice. Likewise, ATP exocytosis was decreased in t-PA(-/-) and attenuated by t-PA(stop) in WT mice. Thus, t-PA-induced enhancement of sympathetic neurotransmission is a prejunctional event associated with increased transmitter exocytosis and independent of u-PA and plasminogen availability. This novel t-PA action may be a potential therapeutic target in hyperadrenergic states.
    [Abstract] [Full Text] [Related] [New Search]