These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pharmacokinetic modelling of pentoxifylline and lisofylline after oral and intravenous administration in mice.
    Author: Wyska E, Szymura-Oleksiak J, Pekala E, Obruśnik A.
    Journal: J Pharm Pharmacol; 2007 Apr; 59(4):495-501. PubMed ID: 17430632.
    Abstract:
    The aim of this study was to develop pharmacokinetic models for pentoxifylline (PTX) and the R(-)-enantiomer of the PTX metabolite 1, lisofylline (LSF), in order to identify some factors influencing the absorption of these compounds from the intestines and to clarify mechanisms involved in their non-linear pharmacokinetics. Serum samples were collected after oral and intravenous administration of PTX and LSF to male CD-1 mice at two different doses. In addition, both compounds under investigation were coadministered with a modulator of drug transporters, verapamil, and an inhibitor of cytochrome P450 (CYP) 3A4, ketoconazole. Pharmacokinetic analysis revealed that a one-compartment model with Michaelis-Menten type absorption and elimination best described the pharmacokinetics of PTX, whereas the LSF concentration-time data were adequately fitted to a two-compartment model with a first-order absorption and Michaelis-Menten type elimination process. Both coadministered compounds significantly decreased the area under the concentration-time curve from 0 to 60 min calculated for PTX and increased the value of this parameter for LSF. The results of this study indirectly suggest that saturation of drug transport across intestinal cells and elimination from the central compartment may be responsible for the non-linear pharmacokinetics of PTX, whereas in the case of LSF, the dose dependency in the pharmacokinetics is solely related to the elimination from the central compartment. It seems that the observed changes in PTX and LSF concentrations after coadministration with verapamil and ketoconazole may be clinically significant, especially after chronic treatment, however further studies are necessary to assess the importance of these interactions in humans.
    [Abstract] [Full Text] [Related] [New Search]