These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Small-molecule vasopressin-2 receptor antagonist identified by a g-protein coupled receptor "pathway" screen.
    Author: Yangthara B, Mills A, Chatsudthipong V, Tradtrantip L, Verkman AS.
    Journal: Mol Pharmacol; 2007 Jul; 72(1):86-94. PubMed ID: 17435162.
    Abstract:
    G-protein-coupled receptors (GPCRs) such as the vasopressin-2 receptor (V(2)R) are an important class of drug targets. We developed an efficient screen for GPCR-induced cAMP elevation using as read-out cAMP activation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channels. Fischer rat thyroid cells expressing CFTR and a halide-sensing yellow fluorescent protein (H148Q/I152L) were transfected with V(2)R. Increased cell Cl(-) conductance after agonist-induced cAMP elevation was assayed using a plate reader from cell fluorescence after solution I(-) addition. The Z' factor for the assay was approximately 0.7 with the V(2)R agonist [deamino-Cys1, Val4, d-Arg8]-vasopressin (1 nM) as positive control. Primary screening of 50,000 small molecules yielded a novel, 5-aryl-4-benzoyl-3-hydroxy-1-(2-arylethyl)-2H-pyrrol-2-one class of V(2)R antagonists that are unrelated structurally to known V(2)R antagonists. The most potent compound, V(2)R(inh)-02, which was identified by screening 35 structural analogs, competitively inhibited V(2)R-induced cAMP elevation with K(i) value of approximately 70 nM and fully displaced radiolabeled vasopressin in binding experiments. V(2)R(inh)-02 did not inhibit forskolin or beta(2)-adrenergic receptor-induced cAMP production and was more than 50 times more potent for V(2)R than for V(1a)R. The favorable in vitro properties of the pyrrol-2-one antagonists suggests their potential usefulness in aquaretic applications. The CFTR-linked cAMP assay developed here is applicable for efficient, high-throughput identification of modulators of cAMP-coupled GPCRs.
    [Abstract] [Full Text] [Related] [New Search]